

Research Article

COMPARATIVE ANALYSIS OF SAMSAMANI VATI/GUDUCHIGHANA VATI OF COMPETITIVE AYURVEDA PHARMACEUTICALS OF INDIA

Ashok Kumar Panda^{1*}, Sarbeswar Kar², Rahul singh³, Chandra Kanta Katiyar⁴

- *1Senior Research Officer, Central Ayurveda Research Institute, Bhubaneswar, Orissa,
- ²Principal, ISS Ayurveda Medical College, Mysore, Karnataka,
- ³Corporate Head, Analytical Division, ⁴CEO, Emami Research Laboratory, Kolkata, India.

Article info

Article History:

Received: 18-03-2023 Revised: 09-04-2023 Accepted: 29-04-2023

KEYWORDS:

Samsamani Vati, Guduchi Ghana Vati, *Tinospora* cordifolia, Gilova, Tinosporide.

ABSTRACT

Guduchi/Giloy (Tinospora cordifolia) is declared a national herb of India due to its multiple medicinal properties. Samsamani Vati is also known as Guduchi ghanavati (a concentrated form of decoction of Guduchi stem) the secondary Kalpala (formulation) derived from the primary Kwatha Kalpana (decoction). Samsamani Vati is freely distributed by the Ministry of AYUSH in all states and union territories of India as prophylaxis for COVID-19. The molecular docking of Tinocordicide - a constituent of Guduchi (Tinospora cordifolia) showed significant interruption of the viral RBD and host ACE2 interactions. T. cordifolia, T. crispa, T. sinensis, T. smilacina, T. bakis, and T. sagittata are different species of Guduchi, whereas Tinospora crispa and T.sinensis are hepatotoxic. General people are aware of the use of Samsamani vati/ Guduchi Ghana vati/Giloy and purchase from leading Ayurveda medicine manufacturers in India. Tinosporaside is an immune-modulatory active compound as well as a cholinergic inhibitor. It is an attempt for compare analysis of Samsamani Vati/Guduchi Ghana vati used in the population for the prevention of COVID-19 of government supply and lead Pharmaceutical Company of India. The Samsamani Vati/Guduchi Ghana vati of lead Ayurveda Pharmaceutical and Government Supply. (Dabur, Zandu, Patanjali, Himalaya, Baidyanath and IMPCL) were purchased from the local market and put forth for analysis. Tinosporide is significantly detected in Patanjali, Zandu and IMPCL-manufactured Samsamani Vati, whereas a trace amount of bioactive compound in Dabur and not detected in Baidyanath. The analysis showed that no uniformity of Samsamani Vati/Guduchi Ghana Vati of the competitive brand of India. It is recommended to maintain uniformity of bioactive molecules not only for desired efficacy but also for safety.

INTRODUCTION

Ayurveda formulations will be the future preventive and curative medicine for many chronic Giloy, COVID-19^[1,2]. even (Tinospora cordifolia) also known as Guduchi and 'Amrita' in the classical texts of Ayurveda literally means the plant who protects from many diseases and the root of immortality[3]. Samsamani Vati (Guduchi/Giloya ghana vati) is a classical formulation of Siddhayoga samgraha

Access this article online					
Quick Response Code					
回数线回	https://doi.org/10.4707				
	Published by Mahadev publication licensed Commons Attribu ShareAlike 4.0 Internation				

https://doi.org/10.47070/ijapr.v11i4.2753

Published by Mahadev Publications (Regd.) publication licensed under a Creative Attribution-NonCommercial-Commons ShareAlike 4.0 International (CC BY-NC-SA 4.0)

indicated in different types of *Ivara* (fever). Samsamani Vati/Giloy Ghana Vati is proved as a biological response modifier by macrophage activation and increased interleukin production. The molecular docking of Tinocordicide constituent of Guduchi (Tinospora cordifolia) showed significant interruption of the viral RBD and host ACE2 interactions[3,4]. The Ministry of AYUSH launched a campaign to distribute of Samsamani Vati to large population as prophylaxis medicine for COVID-19 under its series of activities under the 'Azadi Ka Amrit Mahotsay'. Samsamani Vati otherwise known as Guduchi ghanavati (a concentrated form of decoction of Guduchi stem) the secondary Kalpala (formulation) derived from the primary Kwatha Kalpana (decoction). Two types of Guduchi are described in Ayurveda which are botanically identified as Tinospora cordifolia and Tinospora sinensis or Tinospora malabaria. But T.

cordifolia, T. crispa, T. sinensis, T. smilacina, T. bakis, and *T. sagittata* have been reported to possess significant immunomodulatory effects. Guduchi or Amruta is declared as National herb by Government of The important bioactive molecules terpenoids, alkaloids, lignans, bitter steroids, glycosides, and sesquiterpenoids, aliphatic compounds, essential oils, fatty acids, and polysaccharides. The aerial parts, mainly stems of *T. cordifolia*, various constituents including phenyl propanoid glycosides like cordifolioside A and B, syringin with diterpenoids tinosporaside, tinosporin, tinosporidine, tinocordifolioside. and alkaloids columbin. isocolumbin, berberine, magnoflorine have been reported.

The important pharmacological properties are immune-modulatory, antipyretic, anti-inflammatory, hepato protective, anti-stress. anti-histaminic activities. Guduchi has good clinical outcome in asymptomatic case of Covid-19 infections[5]. In the recent past some Guduchi-induced liver injuries has also reported^[6,7]. It may due to the *Tinospora crispa* and T.sinensis which are known hepato-toxicity and Borapetosides and Tinoseneside are two diterpenoids responsible for liver injury^[8,9]. This news spread in electronic and press media. It was a strong counter publication by eminent scholar^[10] but no sufficient data to defend it. Marker-based standardization is one of the important methods of characterization of botanical drugs. Standardization also aids in defining the amount of constituents that are attributable to biological activity. The Ministry of AYUSH has been creating awareness of the use of Samsamani Vati for the prevention of COVID-19. Due to the mass distribution of Samsamani vati in large population and the increased risk of self-medication of Samsasamai Vati. The chemical analysis and characterization of bioactive molecules and contaminants are highly necessary for uniform quality. In this aspect, standardization of Samsamani Vati/Giloy Ghana vati is an important aspect for assuring quality, safety, and efficacy. Tinosporaside is an immune-modulatory active compound as well as a cholinergic inhibitor^[11,12]. General people are aware of the use of Samsamani vati/ Guduchi Ghana vati/Giloy for prevention of various diseases and purchased from a leading manufacturer in India.

Therefore, it is an attempt for compare analysis of *Samsamani Vati/Guduchi Ghana vati* used in the population for the prevention of COVID-19 of government supply and lead Pharmaceutical Company of India. Among the complex mixture of biologically active compounds in the *Guduchi* plant, tinosporaside can be used as an analytical marker to determine the quality of plant material of different sources^[13].

Objective: The primary objective of the study to check the quality of *Samsamani/Guduchi Ghana Vati* of various lead Pharmaceutical companies and Government supply. The secondary objective is to quantify the bioactive molecules like- Tinosporide, bitters from various samples.

MATERIALS AND METHODS

Apparatus

Water bath, sonicator (Trans-O-Sonic, Mumbai, India), and weighing balance (Sartorius, Göttlingen, Germany) were used for general experiments. CAMAG (Muttenz, Switzerland) Linomat 5-sample applicator, CAMAG TLC Scanner 4, and CAMAG Photo-document were used for HPTLC analysis.

Reagents, Materials and Standards

Milli-Q water, Solvents namely Toluene, ethyl acetate, formic acid, methanol and pre-coated aluminium silica gel 60 F_{254} TLC plates were procured from Merck Specialties Private Limited (Karnataka, India). Tinosporide standard was isolated in-house and characterized by different chromatographic techniques.

Test Material

Marketed formulation of Samsamani Vati/ Guduchi Ghana Vati was collected from local market.

Sample preparation for Tinosporide by HPTLC

The Samsamani vati/Guduchi Ghana vati of lead Pharmaceutical and government Supply. (Dabur, Zandu, Patanjali, Himalaya, Baidyanath and IMPCL) were purchased from local market and batch mark were noted, 10 tablets of each sample pulverized using mortar pestle. Around 2.0gm of each sample was taken into a 50ml volumetric flask and 20ml of methanol was added and sonicated for 10 minutes followed by heating on a water bath for another 10 minutes. The resulting solution was filtered through Whatman no. 1 filter paper in a 25ml volumetric flask and the volume was made up with methanol. The resulting solution was used as test solution after filtration through 0.2µm syringe filter. The analytical method validation studies were performed as per International Conference on Harmonization-Quality (ICH-Q2 (R1)) guidelines.

HPTLC Conditions

The chromatographic estimation was performed by spotting standards and sample of *Samsamani Vati/Giloy Ghana Vati* on pre-coated aluminium TLC plates of silica gel $60 \, F_{254}$ ($20 \, \text{cm} \times 10 \, \text{cm}$, E. Merck) using a CAMAG Linomat V sample applicator and a $100 \, \text{mL}$ syringe. The samples, in the form of bands of length $8 \, \text{mm}$, were spotted at a constant application rate of $80 \, \text{nL}$ s-1 using nitrogen aspirator. The plates were developed using the mobile phase Toluene: Ethyl acetate: Formic Acid: Methanol [15:15:4:1; v/v/v/v). Linear ascending development

was carried out in 20cm × 10cm twin-trough glass chamber (CAMAG) saturated with the mobile phase. The optimized chamber saturation time for the mobile phase was 15 minutes at room temperature. The length of the mobile phase run was 60mm. Approximately 20ml of the mobile phase was used for development. After the development, TLC plate the plates were derivatized by dipping in anisaldehyde sulphuric acid [ASA] reagent and subsequent heating at 105°C for 5 min in hot-air oven (Figure: 1-6). The slit dimension settings of 6.00 × 0.45mm in length and a scanning rate of 20mm s-1 were employed. The monochromator bandwidth was set at 20nm. Densitometric scanning was performed on a CAMAG TLC Scanner 4 in absorbance mode at 560nm and

operated by winCATS planar chromatography version 1.4.9 (CAMAG).

physico-chemical parameters Competitive Brand Samples was analyzed as per Avurvedic Pharmacopoeia of India^[14].

Results

Tinosporide is significantly detected Patanjali, Zandu and IMPCL products whereas trace amount in Dabur and not detected in Baidyanath sample as shown in Figure-1. The bitter principle was more in Zandu and Baidyanath Product. The heavy metal (Lead and Mercury) is more than permissible limit in IMPCL products (Table no-1). None of the studied products contain Arsenic and cadmium. All products are free from pathogen and Aflatoxins. The results are incorporated in Table-1.

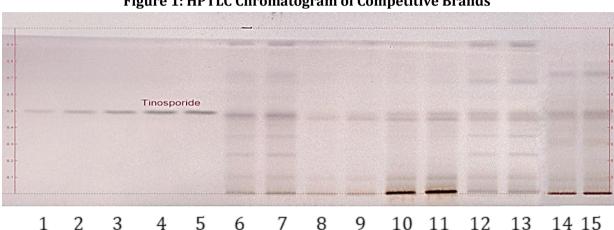


Figure 1: HPTLC Chromatogram of Competitive Brands

Track Details

Track 1-5: Tinosporide Std.

Track 6-7: Baidyanath Giloy Ghan Bati

Track 8-9: Dabur Samshamani Vati Gilov Ki Ghanyati

Track 10-11: Zandu Gilov Ghanvati

Track 12-13: Impcl Samsamani Vati

Track 14-15: Patanjali GiloyGhanvati

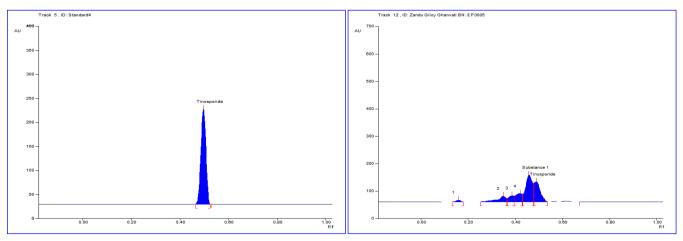


Figure-2: HPTLC Chromatogram of Tinosporide std. Figure-3: HPTLC Chromatogram of Zandu Giloy Ghanvati

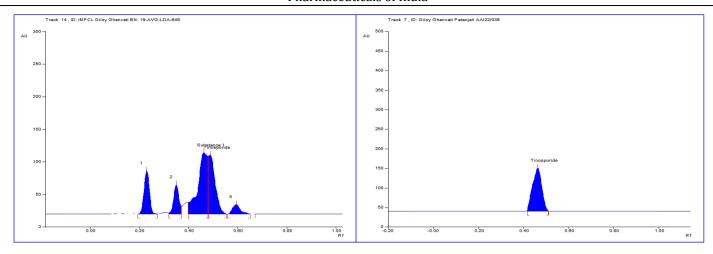


Figure-4: HPTLC Chromatogram of IMPCL Samsamani Vati

Figure-5: HPTLC Chromatogram of *Patanjali Guduchi/Giloy ghanvati*

Figure 6: Overlaid reflectance spectra of Peak at similar Rf in Patanjali, Zandu & IMPCL samples

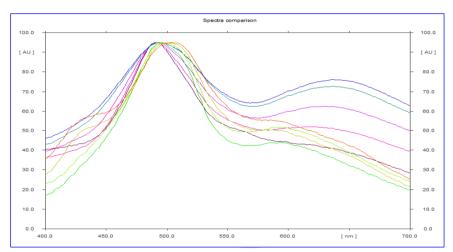


Table 1: Comparative analysis report of Samsamani Vati/Giloy Ghana Vati

Parameter	Result					
	Zandu	Dabur	Baidyanath	IMPCL	Patanjali	
1. Total Ash (%w/w)	5.86	1.74	8.37	9.26	4.50	
2. Acid Insoluble Ash (%w/w)	1.45	0.19	1.16	4.47	2.31	
3. LOD (%w/w)	7.51	7.83	7.07	6.84	9.95	
4. Alcohol Soluble Extractive (%w/w)	38.04	10.25	14.71	16.77	5.83	
5. Water Soluble Extractive (%w/w)	64.69	57.55	67.55	43.88	79.62	
6. pH (1% w/v suspension)	5.24	5.73	5.51	6.55	4.85	
7. Assay						
a. as Total Bitters (%w/w)	a.1.55	a. 0.89	a. 1.44	a. 1.23	a. 1.68	
b. Tinosporide (%w/w)	b. 0.040	b. Traces	b. ND*	b. 0.055	b. 0.10	
8. Microbial Analysis (cfu/g)						
a. Total Plate Count	a. 103	a. 3775	a. TNTC	a. TNTC	a. 975	
b. Total Yeast and Mould	b. <10	b. <10	b. <10	b. 150	b. 65	
C. Pathogens (in 10 g)						
i. <i>E.coli</i>	c. All	c. All	c. All absent	c. All absent	c. All absent	
ii. Salmonella sp.	absent	absent				
iii. P.aeruginosa						

iv. S.aureus					
9. Heavy Metals (ppm)					
a. Lead	a. 5.63	a. ND	a. 1.39	a. 30.12	a. 0.43
b. Arsenic	b. 0.04	b. ND	b. ND	b. ND	b. ND
C. Cadmium	c. 0.02	c. ND	c. ND	c. ND	c. 0.059
d. Mercury	d. ND	d. ND	d. 7.02	d. 32.37	d. ND
10. Aflatoxin	Not detected	Not detected	Not detected	Not detected	Not detected

*ND-Not Detected

DISCUSSION

General people aware of the use of Samsamani vati/ Guduchi Ghana vati/Giloy and purchase from leading Ayurveda manufacturers of India. The comparative analysis suggested the difference in physico-chemical parameters (like, total ash, acid insoluble ash, extractives values) as well as assay parameters though HPTLC[15]. Bioactive compound are secondary metabolites of plant or microbes express bio active properties without adding nutritional benefit to human. The uniformity of bio active molecules is a big challenges due diverse types of raw materials, soil condition and extraction methods[16]. The high amount of mercury and lead in IMPCL tested samples may be due to contamination of soil or in preparation. But heavy metals in Ayurveda medicine is a big issues should be address properly with strong regulation. Similar study of marked sample of Ayurveda medicine also showed divergent types of HPTLC fingerprinting^[17,18]. The determination of Borapetosides and Tinoseneside is beyond this paper whereas Borapetosides is also not hepatotoxic as reported[19]. *Tinospora cordifolia* is also hepato toxic as claimed^[20]. It may be due to pre-existing liver diseases and other contaminants in crude herb. Any western medicine contains iust one active molecule. synthetically, whereas Samsamani Vati has mixture of over dozen chemicals that act synergistically. Every Ayurveda medicine should have complete chemical profiling with advanced technology and phytochemical screening is very necessary to maintain bioactivities and safety^[21].

CONCLUSION

There is no uniformity of *Samsamani Vati/Guduchi Ghana vati* of competitive brand of India. It is recommended to maintain uniformity in all Ayurveda pharmaceuticals of bioactive molecules not only for desired efficacy but also for safety.

REFERENCES

1. Upadhyay AK, Kumar K, Kumar A, Mishra HS. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi)- validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res. 2010; 1(2): 112-121. doi:10.4103/0974-7788.64405

- Anees Ahmed Mahaboob Ali, Andrea Bugarcic, Nenad Naumovski, Reena Ghildyal, "Ayurvedic formulations: Potential COVID-19 therapeutics?" Phytomedicine Plus, 2022; 2(3) https://doi.org/10.1016/j.phyplu.2022.100286
- 3. Acharya RN, Buha MM, Sojitra NH. Guduchi (Tinospora cordifolia (Willd.) Miers): A Comprehensive Review of itsInternal Administration. J Drug Res Ayurvedic Sci 2020; 5(2): 98–120.
- 4. Chowdhury P. In silico investigation of phytoconstituents from Indian medicinal herb 'Tinospora cordifolia (giloy)' against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J Biomol Struct Dyn. 2021; 39(17): 6792-6809. doi:10.1080/07391102.2020.1803968
- 5. Balkrishna A, Pokhrel S, Varshney A. Tinocordiside from Tinospora cordifolia (Giloy) May Curb SARS-CoV-2 Contagion by Disrupting the Electrostatic Interactions between Host ACE2 and Viral S-Protein Receptor Binding Domain. Comb Chem High Throughput Screen. 2021; 24(10): 1795-1802. doi: 10.2174/13862073236662011101 52615. PMID: 33172372.
- 6. Priyanka Sharma, Bharat P. Dwivedee, Dheeraj Bisht, Ashutosh K. Dash, Deepak Kumar, The chemical constituents and diverse pharmacological importance of Tinospora cordifolia, Heliyon, 2019; 5(9): e02437, https://doi.org/10.1016/j.heliyon. 2019.e02437
- 7. Karousatos, C.M., Lee, J.K., Braxton, D.R. et al. Case series and review of Ayurvedic medication induced liver injury. BMC Complement Med Ther,91 (2021). https://doi.org/10.1186/s12906-021-03251-z
- 8. Nagral A, Adhyaru K, Rudra OS, Gharat A, Bhandare S. Herbal Immune Booster-Induced Liver Injury in the COVID-19 Pandemic A Case Series. J Clin Exp Hepatol. 2021 Nov-Dec; 11(6): 732-738. doi: 10.1016/j.jceh.2021.06.021. Epub 2021 Jul 2. PMID: 34230786; PMCID: PMC8252698.
- 9. Huang WT, Tu CY, Wang FY, Huang ST. Literature review of liver injury induced by Tinospora crispa associated with two cases of acute fulminant hepatitis. Complement Ther Med. 2019 Feb; 42:

- 286-291. doi: 10.1016/j.ctim.2018.11.028. Epub 2018 Dec 6. PMID: 30670256.
- 10. Langrand J, Regnault H, Cachet X, Bouzidi C, Villa AF, Serfaty L, Garnier R, Michel S. Toxic hepatitis induced by a herbal medicine: Tinospora crispa. Phytomedicine. 2014 Jul-Aug; 21(8-9): 1120-3. doi: 10.1016/j.phymed.2014.04.031. Epub 2014 May 24. PMID: 24867504.
- 11. Sanjeev Rastorgi, Deep N Pandey, Leeter to editor, Herbal Immune Booster-Induced Liver Injury in the COVID-19 Pandemic- A Case Series, DOI: https://doi.org/10.1016/j.jceh.2021.08.006
- 12. Sharma, Upendra K. et al. Immunomodulatory active compounds from Tinospora cordifolia. Journal of ethnopharmacology 141 3 (2012): 918-26.
- 13. Adib M, Islam R, Ahsan M, Rahman A, Hossain M, Rahman MM, Alshehri SM, Kazi M, Mazid MA. Cholinesterase inhibitory activity of tinosporide and 8-hydroxytinosporide isolated from Tinospora cordifolia: In vitro and in silico studies targeting the management of Alzheimer's disease. Saudi J Biol Sci. 2021 Jul; 28(7): 3893-3900. doi: 10.1016/j.sjbs.2021.03.063. Epub 2021 Mar 30. PMID: 34220245; PMCID: PMC8241625.
- 14. Annonymous, Ayurveda Pharmacopoeia of India Part-I, Volume IX; 2016
- 15. Khan, T. A., A. K. Gohel, and R. Mallya. "standardisation and HPTLC method development of marketed Ayurvedic formulation "balarishta". International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 3, Mar. 2016, pp. 201-9

- 16. Pai, S., Hebbar, A. & Selvaraj, S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environ Sci Pollut Res 29, 35518–35541 (2022). https://doi.org/10.1007/s11356-022-19423-4
- 17. Parveen A, Maqbool MT, Wang YH, Ali Z, Khan IA, Ashfaq MK. Evaluation of the hepatotoxic potential of Tinospora crispa and its isolated borapetosides B, C and F in a murine model. Planta Med. 2020 May; 86(7): 489-495. doi: 10.1055/a-1127-7503. Epub 2020 Mar 26. PMID: 32219777.
- 18. Bhalla A, Pannu AK. Are Ayurvedic medications store house of heavy metals? Toxicol Res (Camb). 2022 Jan 15; 11(1): 179-183. doi: 10.1093/toxres/tfab124. PMID: 35237422; PMCID: PMC8882783.
- 19. V. Puratchimani and S. Jha, HPTLC standardization of Tinospora Cordifolia using Tinosporaside, Indian J Pharm Sci, 2007, 69 (4): 578-581, 10.4103/0250-474X.36951
- 20. Kulkarni AV, Hanchanale P, Prakash V, Kalal C, Sharma M, Kumar K, Bishnu S, Kulkarni AV, Anand L, Patwa AK, Kumbar S, Kainth S, Philips CA; Liver Research Club India. Tinospora Cordifolia (Giloy)-Induced Liver Injury During the COVID-19 Pandemic-Multicenter Nationwide Study From India. Hepatol Commun. 2022 Jun; 6(6): 1289-1300. doi: 10.1002/hep4.1904.
- 21. Segneanu, A., Velciov, S. M., Olariu, S., Florentina Cziple, F., Damian, D., & Grozescu, I. (2017). Bioactive Molecules Profile from Natural Compounds. In T. Asao, & M. Asaduzzaman (Eds.), Amino Acid New Insights and Roles in Plant and Animal. IntechOpen. https://doi.org/10.5772/intechopen.68643

Cite this article as:

Ashok Kumar Panda, Sarbeswar Kar, Rahul singh, Chandra Kanta Katiyar. Comparative Analysis of Samsamani Vati/Guduchighana Vati of Competitive Ayurveda Pharmaceuticals of India. International Journal of Ayurveda and Pharma Research. 2023;11(4):50-55.

https://doi.org/10.47070/ijapr.v11i4.2753

Source of support: Nil, Conflict of interest: None Declared

*Address for correspondence Dr. Ashok Kumar Panda

Senior research officer, Central Ayurveda Research Institute, Bhubaneswar, Under CCRAS, M/O AYUSH, GOI E mail: akpanda 06@yahoo.co.in

Disclaimer: IJAPR is solely owned by Mahadev Publications - dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IJAPR cannot accept any responsibility or liability for the articles content which are published. The views expressed in articles by our contributing authors are not necessarily those of IJAPR editor or editorial board members.